mirror of
https://github.com/luckyrobots/open_phantom.git
synced 2025-04-03 10:32:19 +00:00
fix icp and rename repo
This commit is contained in:
parent
2b3bbe8f10
commit
7184cf25d8
@ -8,7 +8,7 @@ import mediapipe as mp
|
||||
|
||||
from tqdm import tqdm
|
||||
from utils.visualizations import *
|
||||
from phantom.robot_manager import RobotManager
|
||||
from robot_manager import RobotManager
|
||||
# from diffusers import StableDiffusionInpaintPipeline
|
||||
|
||||
|
||||
@ -172,59 +172,22 @@ class HandProcessor:
|
||||
return np.array(dense_vertices), np.array(faces)
|
||||
|
||||
def _icp_registration(self, cloud: np.ndarray, vertices: np.ndarray) -> np.ndarray:
|
||||
# Normalize both point clouds to handle scale differences
|
||||
cloud_centroid = np.mean(cloud, axis=0)
|
||||
vertices_centroid = np.mean(vertices, axis=0)
|
||||
|
||||
cloud_centered = cloud - cloud_centroid
|
||||
vertices_centered = vertices - vertices_centroid
|
||||
|
||||
cloud_scale = np.max(np.linalg.norm(cloud_centered, axis=1))
|
||||
vertices_scale = np.max(np.linalg.norm(vertices_centered, axis=1))
|
||||
|
||||
cloud_normalized = cloud_centered / cloud_scale
|
||||
vertices_normalized = vertices_centered / vertices_scale
|
||||
|
||||
# Create Open3D point clouds
|
||||
source = o3d.geometry.PointCloud()
|
||||
source.points = o3d.utility.Vector3dVector(vertices_normalized)
|
||||
source.points = o3d.utility.Vector3dVector(vertices)
|
||||
|
||||
target = o3d.geometry.PointCloud()
|
||||
target.points = o3d.utility.Vector3dVector(cloud_normalized)
|
||||
target.points = o3d.utility.Vector3dVector(cloud)
|
||||
|
||||
# Optional: Downsample for better performance
|
||||
source = source.voxel_down_sample(voxel_size=0.01)
|
||||
target = target.voxel_down_sample(voxel_size=0.01)
|
||||
|
||||
# Initial identity transformation
|
||||
trans_init = np.eye(4)
|
||||
|
||||
# Run ICP with better parameters
|
||||
result = o3d.pipelines.registration.registration_icp(
|
||||
source,
|
||||
target,
|
||||
max_correspondence_distance=0.2, # Increased for better matching
|
||||
init=trans_init,
|
||||
estimation_method=o3d.pipelines.registration.TransformationEstimationPointToPlane(),
|
||||
criteria=o3d.pipelines.registration.ICPConvergenceCriteria(max_iteration=100)
|
||||
max_correspondence_distance=0.05,
|
||||
estimation_method=o3d.pipelines.registration.TransformationEstimationPointToPoint(),
|
||||
)
|
||||
|
||||
# Create denormalization transformation
|
||||
denorm_transform = np.eye(4)
|
||||
denorm_transform[:3, :3] *= (cloud_scale / vertices_scale)
|
||||
transformation = result.transformation
|
||||
|
||||
# Combine transformations
|
||||
transform_to_origin = np.eye(4)
|
||||
transform_to_origin[:3, 3] = -vertices_centroid
|
||||
|
||||
transform_from_origin = np.eye(4)
|
||||
transform_from_origin[:3, 3] = cloud_centroid
|
||||
|
||||
final_transform = np.matmul(transform_from_origin,
|
||||
np.matmul(denorm_transform,
|
||||
np.matmul(result.transformation, transform_to_origin)))
|
||||
|
||||
return final_transform
|
||||
return transformation
|
||||
|
||||
def _refine_landmarks(self, landmarks: list, transform: int, image_dims: tuple):
|
||||
width, height = image_dims
|
@ -1,6 +1,6 @@
|
||||
import os
|
||||
|
||||
from phantom.hand_processor import HandProcessor
|
||||
from hand_processor import HandProcessor
|
||||
|
||||
|
||||
def main():
|
Loading…
x
Reference in New Issue
Block a user