mirror of
https://github.com/luckyrobots/open_phantom.git
synced 2025-04-04 02:52:18 +00:00
capture intrinsic camera parameters
This commit is contained in:
parent
d7aa008d7a
commit
83d06a07be
121
open_phantom/utils/calibration/calibration_math.py
Normal file
121
open_phantom/utils/calibration/calibration_math.py
Normal file
@ -0,0 +1,121 @@
|
|||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def compute_line_equation(points: list) -> tuple:
|
||||||
|
"""Compute line equation from two points"""
|
||||||
|
pt1, pt2 = points[0], points[1]
|
||||||
|
slope = (pt2[1] - pt1[1]) / (pt2[0] - pt1[0] + 1e-10) # Avoid division by zero
|
||||||
|
intercept = pt2[1] - slope * pt2[0]
|
||||||
|
|
||||||
|
a, b, c = -slope, 1.0, -intercept
|
||||||
|
|
||||||
|
return a, b, c
|
||||||
|
|
||||||
|
|
||||||
|
def compute_point_of_intersection(line1: tuple, line2: tuple) -> tuple | None:
|
||||||
|
"""Compute intersection point of two lines"""
|
||||||
|
a1, b1, c1 = line1
|
||||||
|
a2, b2, c2 = line2
|
||||||
|
|
||||||
|
det = a1 * b2 - a2 * b1
|
||||||
|
# If lines are parallel, determinant will be zero
|
||||||
|
if abs(det) < 1e-10:
|
||||||
|
return None
|
||||||
|
|
||||||
|
x = (b1 * c2 - b2 * c1) / det
|
||||||
|
y = (a2 * c1 - a1 * c2) / det
|
||||||
|
|
||||||
|
return (x, y)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_vanishing_point(points: list) -> tuple | None:
|
||||||
|
"""Compute vanishing point from two parallel lines by intersecting their line equations"""
|
||||||
|
a1, b1, c1 = compute_line_equation([points[0], points[1]])
|
||||||
|
a2, b2, c2 = compute_line_equation([points[2], points[3]])
|
||||||
|
|
||||||
|
return compute_point_of_intersection((a1, b1, c1), (a2, b2, c2))
|
||||||
|
|
||||||
|
|
||||||
|
def compute_K_from_vanishing_points(vanishing_points: list) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Compute camera intrinsic matrix K from orthogonal vanishing points.
|
||||||
|
|
||||||
|
Mathematical background:
|
||||||
|
- Vanishing points from orthogonal 3D directions provide constraints on the camera's
|
||||||
|
intrinsic parameters.
|
||||||
|
- If v_i and v_j are vanishing points from orthogonal 3D directions, then:
|
||||||
|
v_i^T * omega * v_j = 0, where omega = (K*K^T)^(-1)
|
||||||
|
- This gives us quadratic constraints on the elements of omega, which we solve
|
||||||
|
to recover K.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
vanishing_points: List of at least 3 vanishing points corresponding to
|
||||||
|
orthogonal directions in 3D space.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
K: 3x3 camera intrinsic matrix
|
||||||
|
"""
|
||||||
|
# Each pair of orthogonal vanishing points provides one constraint on omega
|
||||||
|
A = []
|
||||||
|
for i, point_i in enumerate(vanishing_points):
|
||||||
|
for j, point_j in enumerate(vanishing_points):
|
||||||
|
if i != j and j > i: # Consider each pair only once
|
||||||
|
# Convert to homogeneous coordinates
|
||||||
|
p1 = np.array([point_i[0], point_i[1], 1.0])
|
||||||
|
p2 = np.array([point_j[0], point_j[1], 1.0])
|
||||||
|
|
||||||
|
# The constraint v_i^T * omega * v_j = 0 expands to:
|
||||||
|
# p1[0]*p2[0]*omega[0,0] + p1[0]*p2[1]*omega[0,1] + p1[0]*omega[0,2]*p2[2] +
|
||||||
|
# p1[1]*p2[0]*omega[1,0] + p1[1]*p2[1]*omega[1,1] + p1[1]*omega[1,2]*p2[2] +
|
||||||
|
# p1[2]*p2[0]*omega[2,0] + p1[2]*p2[1]*omega[2,1] + p1[2]*p2[2]*omega[2,2] = 0
|
||||||
|
|
||||||
|
# With zero-skew assumption (omega[0,1]=omega[1,0]=0) and
|
||||||
|
# square pixels (omega[0,0]=omega[1,1]), we get:
|
||||||
|
A.append(
|
||||||
|
[
|
||||||
|
p1[0] * p2[0]
|
||||||
|
+ p1[1] * p2[1], # Coefficient for omega[0,0]=omega[1,1]
|
||||||
|
p1[0] * p2[2]
|
||||||
|
+ p1[2] * p2[0], # Coefficient for omega[0,2]=omega[2,0]
|
||||||
|
p1[1] * p2[2]
|
||||||
|
+ p1[2] * p2[1], # Coefficient for omega[1,2]=omega[2,1]
|
||||||
|
p1[2] * p2[2], # Coefficient for omega[2,2]
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
A = np.array(A, dtype=np.float32)
|
||||||
|
|
||||||
|
# Solve the homogeneous system A*w = 0 using SVD
|
||||||
|
# The solution is the eigenvector corresponding to the smallest eigenvalue
|
||||||
|
_, _, vt = np.linalg.svd(A)
|
||||||
|
|
||||||
|
# Extract the coefficients from the last row of Vt (smallest eigenvalue)
|
||||||
|
w1, w4, w5, w6 = vt[
|
||||||
|
-1
|
||||||
|
] # These represent omega[0,0], omega[0,2], omega[1,2], omega[2,2]
|
||||||
|
|
||||||
|
# Reconstruct the omega matrix with enforced symmetry and square pixel constraints
|
||||||
|
# omega = (K*K^T)^(-1)
|
||||||
|
omega = np.array([[w1, 0.0, w4], [0.0, w1, w5], [w4, w5, w6]])
|
||||||
|
|
||||||
|
# K can be obtained by Cholesky factorization of inverse of omega:
|
||||||
|
# If omega = (K*K^T)^(-1), then K*K^T = omega^(-1)
|
||||||
|
# Cholesky gives us K^T, so we invert and transpose
|
||||||
|
try:
|
||||||
|
# Get L such that L*L^T = omega, then K^T = L^(-1)
|
||||||
|
K_transpose_inv = np.linalg.cholesky(omega)
|
||||||
|
K = np.linalg.inv(K_transpose_inv.T)
|
||||||
|
K = K / K[2, 2] # Normalize so K[2,2] = 1
|
||||||
|
except np.linalg.LinAlgError:
|
||||||
|
# If omega is not positive definite, find closest PD matrix
|
||||||
|
# This can happen due to noise in vanishing point estimation
|
||||||
|
eigvals, eigvecs = np.linalg.eigh(omega)
|
||||||
|
eigvals = np.maximum(eigvals, 1e-10) # Ensure positive eigenvalues
|
||||||
|
omega_pd = (
|
||||||
|
eigvecs @ np.diag(eigvals) @ eigvecs.T
|
||||||
|
) # Reconstruct with positive eigenvalues
|
||||||
|
K_transpose_inv = np.linalg.cholesky(omega_pd)
|
||||||
|
K = np.linalg.inv(K_transpose_inv.T)
|
||||||
|
K = K / K[2, 2] # Normalize so K[2,2] = 1
|
||||||
|
|
||||||
|
return K
|
261
open_phantom/utils/calibration/intrinsic.py
Normal file
261
open_phantom/utils/calibration/intrinsic.py
Normal file
@ -0,0 +1,261 @@
|
|||||||
|
import os
|
||||||
|
import re
|
||||||
|
import cv2
|
||||||
|
import time
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from datetime import datetime
|
||||||
|
from calibration_math import *
|
||||||
|
|
||||||
|
|
||||||
|
class PointCollector:
|
||||||
|
"""Collect points for vanishing point calibration"""
|
||||||
|
|
||||||
|
def __init__(self, image: np.ndarray) -> None:
|
||||||
|
self.image = image.copy()
|
||||||
|
self.display_image = image.copy()
|
||||||
|
|
||||||
|
self.height, self.width = image.shape[:2]
|
||||||
|
|
||||||
|
self.points = []
|
||||||
|
self.line_sets = []
|
||||||
|
self.n_line_sets = 3
|
||||||
|
self.current_points = []
|
||||||
|
self.colors = [
|
||||||
|
(0, 0, 255),
|
||||||
|
(0, 255, 0),
|
||||||
|
(255, 0, 0),
|
||||||
|
(255, 255, 0),
|
||||||
|
(255, 0, 255),
|
||||||
|
(0, 255, 255),
|
||||||
|
]
|
||||||
|
|
||||||
|
self.window_name = "Camera Calibration"
|
||||||
|
cv2.namedWindow(self.window_name)
|
||||||
|
cv2.setMouseCallback(self.window_name, self._mouse_callback)
|
||||||
|
|
||||||
|
def _mouse_callback(
|
||||||
|
self, event: int, x: int, y: int, flags: None, param: None
|
||||||
|
) -> None:
|
||||||
|
"""Mouse callback function for collecting points"""
|
||||||
|
if event == cv2.EVENT_LBUTTONDOWN:
|
||||||
|
if len(self.current_points) < 4:
|
||||||
|
self.current_points.append((x, y))
|
||||||
|
self._update_display()
|
||||||
|
|
||||||
|
def _update_display(self) -> None:
|
||||||
|
"""Update display with current points and instructions"""
|
||||||
|
self.display_image = self.image.copy()
|
||||||
|
|
||||||
|
# Draw instructions
|
||||||
|
instructions = [
|
||||||
|
"Click to place points for parallel lines",
|
||||||
|
"Press 'r' to reset current set",
|
||||||
|
"Press 'q' to quit",
|
||||||
|
]
|
||||||
|
for i, text in enumerate(instructions):
|
||||||
|
cv2.putText(
|
||||||
|
self.display_image,
|
||||||
|
text,
|
||||||
|
(10, 30 + i * 30),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX,
|
||||||
|
0.7,
|
||||||
|
(255, 255, 255),
|
||||||
|
2,
|
||||||
|
)
|
||||||
|
|
||||||
|
for i, line_set in enumerate(self.line_sets):
|
||||||
|
self._draw_line_set(line_set, self.colors[i % len(self.colors)])
|
||||||
|
|
||||||
|
self._draw_line_set(
|
||||||
|
self.current_points, self.colors[len(self.line_sets) % len(self.colors)]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Show current state
|
||||||
|
status = (
|
||||||
|
f"Line set {len(self.line_sets) + 1}: {len(self.current_points)}/4 points"
|
||||||
|
)
|
||||||
|
cv2.putText(
|
||||||
|
self.display_image,
|
||||||
|
status,
|
||||||
|
(10, self.height - 60),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX,
|
||||||
|
0.7,
|
||||||
|
(255, 255, 255),
|
||||||
|
2,
|
||||||
|
)
|
||||||
|
|
||||||
|
cv2.imshow(self.window_name, self.display_image)
|
||||||
|
|
||||||
|
def _draw_line_set(self, line_set: list, color: tuple) -> None:
|
||||||
|
# Draw lines
|
||||||
|
if len(line_set) >= 2:
|
||||||
|
cv2.line(self.display_image, line_set[0], line_set[1], color, 2)
|
||||||
|
if len(line_set) >= 4:
|
||||||
|
cv2.line(self.display_image, line_set[2], line_set[3], color, 2)
|
||||||
|
|
||||||
|
# Draw points
|
||||||
|
for point in line_set:
|
||||||
|
cv2.circle(self.display_image, point, 5, color, -1)
|
||||||
|
|
||||||
|
def collect_points(self) -> None:
|
||||||
|
print("Collecting points for vanishing point calculation...")
|
||||||
|
|
||||||
|
while True:
|
||||||
|
self._update_display()
|
||||||
|
key = cv2.waitKey(1) & 0xFF
|
||||||
|
|
||||||
|
if key == ord("q"):
|
||||||
|
exit()
|
||||||
|
elif key == ord("r"):
|
||||||
|
self.current_points = []
|
||||||
|
elif key == ord("c"):
|
||||||
|
if len(self.current_points) == 4:
|
||||||
|
self.line_sets.append(self.current_points)
|
||||||
|
self.current_points = []
|
||||||
|
|
||||||
|
if len(self.line_sets) < 3:
|
||||||
|
print(
|
||||||
|
f"Need {self.n_line_sets} line sets, currently have {len(self.line_sets)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if len(self.line_sets) == self.n_line_sets:
|
||||||
|
break
|
||||||
|
|
||||||
|
if len(self.current_points) == 4:
|
||||||
|
self.line_sets.append(self.current_points)
|
||||||
|
self.current_points = []
|
||||||
|
|
||||||
|
cv2.destroyWindow(self.window_name)
|
||||||
|
|
||||||
|
|
||||||
|
def show_calibration_guidance() -> None:
|
||||||
|
"""Display guidance for vanishing point calibration"""
|
||||||
|
print("\n=== VANISHING POINT CALIBRATION GUIDANCE ===")
|
||||||
|
print(
|
||||||
|
"You'll need to identify 3 sets of parallel lines that are perpendicular to each other in the real world."
|
||||||
|
)
|
||||||
|
print("\nTIPS FOR ACCURATE CALIBRATION:")
|
||||||
|
print(
|
||||||
|
"1. Choose lines from truly orthogonal structures (walls/floor/ceiling intersections)"
|
||||||
|
)
|
||||||
|
print("2. Place points for each line as FAR APART as possible")
|
||||||
|
print("3. Use high-contrast edges for better precision")
|
||||||
|
print("4. Use structures that span a large portion of the image")
|
||||||
|
print("\nFor each direction:")
|
||||||
|
print("- First line: click 2 points along one edge")
|
||||||
|
print("- Second line: click 2 points along another parallel edge")
|
||||||
|
print("\nPress Enter to begin...")
|
||||||
|
input()
|
||||||
|
|
||||||
|
|
||||||
|
def capture_image(file_dir: str) -> str:
|
||||||
|
"""Capture image from camera for intrinsic calibration"""
|
||||||
|
cap = cv2.VideoCapture(0)
|
||||||
|
assert cap is not None, "Error: Could not open camera."
|
||||||
|
|
||||||
|
window_name = "Camera Calibration"
|
||||||
|
cv2.namedWindow(window_name)
|
||||||
|
|
||||||
|
print("Camera preview opened. Press SPACE to capture or ESC to cancel.")
|
||||||
|
print("Position your camera to capture a scene with clear orthogonal structures.")
|
||||||
|
print("Building interiors, boxes, or furniture work well.")
|
||||||
|
|
||||||
|
captured_frame = None
|
||||||
|
|
||||||
|
while True:
|
||||||
|
success, frame = cap.read()
|
||||||
|
if not success:
|
||||||
|
print("Error: Failed to capture frame.")
|
||||||
|
time.sleep(0.5)
|
||||||
|
|
||||||
|
cv2.imshow(window_name, frame)
|
||||||
|
|
||||||
|
key = cv2.waitKey(1) & 0xFF
|
||||||
|
|
||||||
|
if key == 27: # ESC key
|
||||||
|
print("Capture cancelled.")
|
||||||
|
break
|
||||||
|
elif key == 32: # SPACE key
|
||||||
|
captured_frame = frame.copy()
|
||||||
|
break
|
||||||
|
|
||||||
|
cap.release()
|
||||||
|
cv2.destroyWindow(window_name)
|
||||||
|
|
||||||
|
assert captured_frame is not None, "Error: No frame captured."
|
||||||
|
|
||||||
|
filename = "calibration_img.jpg"
|
||||||
|
filepath = os.path.join(file_dir, filename)
|
||||||
|
cv2.imwrite(filepath, captured_frame)
|
||||||
|
print(f"Image saved as {filepath}")
|
||||||
|
|
||||||
|
return filename
|
||||||
|
|
||||||
|
|
||||||
|
def calibrate_intrinsics() -> np.ndarray:
|
||||||
|
"""Calibrate camera intrinsic matrix using vanishing points"""
|
||||||
|
file_dir = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
files = os.listdir(file_dir)
|
||||||
|
match = re.compile(r"calibration_img\.\w+")
|
||||||
|
|
||||||
|
# Look for existing calibration image in calibration directory
|
||||||
|
calibration_img = next((file for file in files if match.match(file)), None)
|
||||||
|
|
||||||
|
if calibration_img is None:
|
||||||
|
response = input(
|
||||||
|
"No calibration image found. Would you like to take a picture now? (y/n)"
|
||||||
|
)
|
||||||
|
if response.strip().lower() == "y":
|
||||||
|
calibration_img = capture_image(file_dir)
|
||||||
|
else:
|
||||||
|
print("Calibration cancelled.")
|
||||||
|
exit()
|
||||||
|
|
||||||
|
img_path = os.path.join(file_dir, calibration_img)
|
||||||
|
img = cv2.imread(img_path)
|
||||||
|
assert img is not None, f"Error: Could not load image '{img_path}'."
|
||||||
|
|
||||||
|
show_calibration_guidance()
|
||||||
|
point_collector = PointCollector(img)
|
||||||
|
point_collector.collect_points()
|
||||||
|
|
||||||
|
vanishing_points = []
|
||||||
|
for line_set in point_collector.line_sets:
|
||||||
|
try:
|
||||||
|
vp = compute_vanishing_point(line_set)
|
||||||
|
vanishing_points.append(vp)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error computing vanishing point: {e}")
|
||||||
|
|
||||||
|
if len(vanishing_points) < 3:
|
||||||
|
print("Could not compute enough vanishing points.")
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
K = compute_K_from_vanishing_points(vanishing_points[:3])
|
||||||
|
print("Estimated Intrinsic Matrix:")
|
||||||
|
print(K)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error computing intrinsic matrix: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||||
|
np_filename = f"intrinsics.npz"
|
||||||
|
file_path = os.path.join(file_dir, np_filename)
|
||||||
|
|
||||||
|
np.savez(
|
||||||
|
file_path,
|
||||||
|
K=K,
|
||||||
|
vanishing_points=vanishing_points,
|
||||||
|
img_path=img_path,
|
||||||
|
timestamp=timestamp,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Saved camera intrinsics to: {np_filename}")
|
||||||
|
|
||||||
|
return K
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
calibrate_intrinsics()
|
Loading…
x
Reference in New Issue
Block a user