mirror of
https://github.com/luckyrobots/open_phantom.git
synced 2025-04-03 10:32:19 +00:00
improve icp by adding a const scale factor
This commit is contained in:
parent
1e6722ae44
commit
ececd98449
@ -1,23 +1,30 @@
|
||||
import os
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import depth_pro
|
||||
import mediapipe as mp
|
||||
import torch
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
import torch
|
||||
from PIL import Image
|
||||
from robot_manager import RobotManager
|
||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||
import mediapipe as mp
|
||||
|
||||
from tqdm import tqdm
|
||||
from collections import deque
|
||||
from utils.visualizations import *
|
||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||
|
||||
|
||||
class HandProcessor:
|
||||
# TODO: Optimize these constants for better results
|
||||
HAND_WIDTH_MM = 90.0 # Average width of male hand in mm
|
||||
CLOUD_Z_SCALE = 5.0
|
||||
# Maximum expected distance between human thumb and index finger in mm when fully extended.
|
||||
MAXIMUM_HAND_WIDTH_MM = 100.0
|
||||
|
||||
|
||||
class ProcessHand:
|
||||
def __init__(self) -> None:
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Initialize MediaPipe Hands for hand detection
|
||||
print("Loading MediaPipe Hands model...")
|
||||
self.mp_hands = mp.solutions.hands
|
||||
self.mp_drawing = mp.solutions.drawing_utils
|
||||
self.mp_drawing_styles = mp.solutions.drawing_styles
|
||||
@ -28,10 +35,9 @@ class HandProcessor:
|
||||
static_image_mode=False,
|
||||
)
|
||||
|
||||
# NOTE: Look into better depth estimation models
|
||||
# Initialize MiDaS for depth estimation
|
||||
print("Loading MiDaS model...")
|
||||
self.midas = torch.hub.load("intel-isl/MiDaS", "DPT_Hybrid")
|
||||
self.midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
|
||||
self.midas.to(self.device)
|
||||
self.midas.eval()
|
||||
|
||||
@ -45,11 +51,17 @@ class HandProcessor:
|
||||
"facebook/sam2-hiera-large"
|
||||
)
|
||||
|
||||
self.gripper_width_buffer = deque(maxlen=100)
|
||||
|
||||
"""
|
||||
Create a segmentation mask over the hand using SAM2 model
|
||||
"""
|
||||
|
||||
def _create_mask(self, frame: np.ndarray, landmarks: list) -> np.ndarray:
|
||||
height, width = frame.shape[:2]
|
||||
# Convert image to RGB for SAM2 model
|
||||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# Set image in SAM2 predictor
|
||||
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
||||
self.sam2_predictor.set_image(frame_rgb) # Set image for prediction
|
||||
|
||||
@ -61,7 +73,7 @@ class HandProcessor:
|
||||
|
||||
input_points = np.array(points)
|
||||
|
||||
# Predict mask with point prompts
|
||||
# Predict mask using point prompts
|
||||
masks, _, _ = self.sam2_predictor.predict(
|
||||
point_coords=input_points, # Pass the points as prompts
|
||||
point_labels=np.ones(
|
||||
@ -79,7 +91,6 @@ class HandProcessor:
|
||||
Estimate depth map using MiDaS model
|
||||
"""
|
||||
|
||||
# TODO: Swap MiDaS for ml-depth-pro model
|
||||
def _estimate_depth(self, image: np.ndarray) -> tuple:
|
||||
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
@ -97,7 +108,7 @@ class HandProcessor:
|
||||
align_corners=False,
|
||||
).squeeze()
|
||||
|
||||
# Convert to numpy and normalize to 0-255 for visualization
|
||||
# Convert to numpy and normalize for visualization
|
||||
depth_map = prediction.cpu().numpy()
|
||||
depth_min = depth_map.min()
|
||||
depth_max = depth_map.max()
|
||||
@ -105,11 +116,17 @@ class HandProcessor:
|
||||
|
||||
return depth_map, depth_map_normalized.astype(np.uint8)
|
||||
|
||||
# TODO: Look into better depth scaling
|
||||
def _create_cloud(self, depth_map: np.ndarray, hand_mask: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Create a point cloud from combining depth map and segmented mask
|
||||
by back-projecting to 3D using camera intrinsics and depth values
|
||||
"""
|
||||
|
||||
def _create_cloud(
|
||||
self, depth_map: np.ndarray, segmented_mask: np.ndarray
|
||||
) -> np.ndarray:
|
||||
focal_x, focal_y, center_x, center_y = self.camera_intrinsics
|
||||
|
||||
v_coords, u_coords = np.where(hand_mask > 0)
|
||||
v_coords, u_coords = np.where(segmented_mask > 0)
|
||||
z_values = depth_map[v_coords, u_coords]
|
||||
|
||||
# Filter out zero depth values
|
||||
@ -118,7 +135,7 @@ class HandProcessor:
|
||||
v_coords = v_coords[valid_indices]
|
||||
z_values = z_values[valid_indices]
|
||||
|
||||
z_metric = z_values * 0.5
|
||||
z_metric = z_values * HAND_WIDTH_MM * CLOUD_Z_SCALE / depth_map.max()
|
||||
|
||||
# Back-project to 3D using camera intrinsics
|
||||
x_values = (u_coords - center_x) * z_metric / focal_x
|
||||
@ -128,15 +145,25 @@ class HandProcessor:
|
||||
|
||||
return points
|
||||
|
||||
# TODO: Look into better depth scaling
|
||||
"""
|
||||
Create hand mesh from hand landmarks
|
||||
"""
|
||||
|
||||
def _create_mesh(self, landmarks: list, image_dims: tuple) -> np.ndarray:
|
||||
width, height = image_dims
|
||||
|
||||
# Extract just z values to understand their range
|
||||
z_values = [landmark.z for landmark in landmarks.landmark]
|
||||
z_min = min(z_values)
|
||||
z_max = max(z_values)
|
||||
|
||||
vertices = []
|
||||
for landmark in landmarks.landmark:
|
||||
vertices.append(
|
||||
[landmark.x * width, landmark.y * height, landmark.z * width]
|
||||
)
|
||||
# Scale z to same range as HAND_WIDTH_MM
|
||||
normalized_z = (landmark.z - z_min) / (z_max - z_min + 1e-6)
|
||||
scaled_z = normalized_z * HAND_WIDTH_MM
|
||||
|
||||
vertices.append([landmark.x * width, landmark.y * height, scaled_z])
|
||||
|
||||
# Define faces (triangles) connecting landmarks
|
||||
faces = [
|
||||
@ -178,7 +205,10 @@ class HandProcessor:
|
||||
|
||||
return np.array(dense_vertices), np.array(faces)
|
||||
|
||||
# TODO: Improve ICP registration for better alignment
|
||||
"""
|
||||
Align hand mesh to point cloud using ICP for accurate 3D reconstruction
|
||||
"""
|
||||
|
||||
def _icp_registration(self, cloud: np.ndarray, vertices: np.ndarray) -> np.ndarray:
|
||||
source = o3d.geometry.PointCloud()
|
||||
source.points = o3d.utility.Vector3dVector(vertices)
|
||||
@ -200,27 +230,39 @@ class HandProcessor:
|
||||
result = o3d.pipelines.registration.registration_icp(
|
||||
source,
|
||||
target,
|
||||
max_correspondence_distance=0.1, # Increased distance
|
||||
max_correspondence_distance=0.05,
|
||||
init=trans_init, # Initial transformation
|
||||
estimation_method=o3d.pipelines.registration.TransformationEstimationPointToPoint(),
|
||||
criteria=o3d.pipelines.registration.ICPConvergenceCriteria(
|
||||
max_iteration=100
|
||||
), # Increased iterations
|
||||
),
|
||||
)
|
||||
|
||||
transformation = result.transformation
|
||||
|
||||
return transformation
|
||||
|
||||
# TODO: Look into better depth scaling
|
||||
def _refine_landmarks(self, landmarks: list, transform: int, image_dims: tuple):
|
||||
"""
|
||||
Refine landmarks based on the icp transformation
|
||||
"""
|
||||
|
||||
def _refine_landmarks(
|
||||
self, landmarks: list, transform: int, image_dims: tuple
|
||||
) -> list:
|
||||
width, height = image_dims
|
||||
|
||||
# Extract z range for normalization, similar to _create_mesh
|
||||
z_values = [landmark.z for landmark in landmarks.landmark]
|
||||
z_min = min(z_values)
|
||||
z_max = max(z_values)
|
||||
|
||||
refined_landmarks = []
|
||||
for landmark in landmarks.landmark:
|
||||
point = np.array(
|
||||
[landmark.x * width, landmark.y * height, landmark.z * width, 1.0]
|
||||
)
|
||||
# Use consistent scaling with _create_mesh
|
||||
normalized_z = (landmark.z - z_min) / (z_max - z_min + 1e-6)
|
||||
scaled_z = normalized_z * HAND_WIDTH_MM
|
||||
|
||||
point = np.array([landmark.x * width, landmark.y * height, scaled_z, 1.0])
|
||||
|
||||
# Apply transformation to 3D point
|
||||
transformed = np.dot(transform, point)
|
||||
@ -228,6 +270,7 @@ class HandProcessor:
|
||||
|
||||
return refined_landmarks
|
||||
|
||||
# TODO: Implement better constraints that limit last joint of each finger to a single DOF
|
||||
def _apply_constraints(self, landmarks: list):
|
||||
constrained = np.array(landmarks)
|
||||
|
||||
@ -236,8 +279,7 @@ class HandProcessor:
|
||||
thumb_indices = [1, 2, 3, 4]
|
||||
index_indices = [5, 6, 7, 8]
|
||||
|
||||
# Constrain the last two joints of thumb and index finger
|
||||
# as mentioned in the paper
|
||||
# Constrain the last two joints of thumb and index finger as per the paper
|
||||
for finger_indices in [thumb_indices, index_indices]:
|
||||
# Get the last three joints (two segments)
|
||||
if len(finger_indices) >= 3:
|
||||
@ -250,8 +292,7 @@ class HandProcessor:
|
||||
dir1 = joint2 - joint1
|
||||
dir1 = dir1 / np.linalg.norm(dir1)
|
||||
|
||||
# Instead of full ball joint, constrain the last joint's direction
|
||||
# to follow similar direction as the previous segment
|
||||
# Instead of full ball joint, constrain last joint's direction to follow previous segment
|
||||
ideal_dir = dir1.copy()
|
||||
actual_dir = joint3 - joint2
|
||||
actual_length = np.linalg.norm(actual_dir)
|
||||
@ -265,8 +306,14 @@ class HandProcessor:
|
||||
|
||||
return constrained
|
||||
|
||||
def _get_robot_params(self, refined_landmarks):
|
||||
# Extract keypoints
|
||||
"""
|
||||
Extract robot parameters from refined landmarks:
|
||||
1. Target Position: Midpoint between thumb tip and index tip
|
||||
2. Target Orientation: Normal to the best-fitting plane of thumb and index finger
|
||||
3. Gripper Width: Distance between thumb tip and index tip
|
||||
"""
|
||||
|
||||
def _get_robot_params(self, refined_landmarks: list) -> tuple:
|
||||
landmarks = np.array(refined_landmarks)
|
||||
|
||||
# Define indices for specific parts of the hand
|
||||
@ -293,54 +340,52 @@ class HandProcessor:
|
||||
# Use SVD to find the normal to the best-fitting plane
|
||||
u, s, vh = np.linalg.svd(centered_points)
|
||||
# The normal is the last right singular vector
|
||||
normal = vh[2, :]
|
||||
|
||||
# Ensure normal is a unit vector
|
||||
normal = normal / np.linalg.norm(normal)
|
||||
plane_normal = vh[2, :]
|
||||
plane_normal = plane_normal / np.linalg.norm(plane_normal)
|
||||
|
||||
# Fit a principal axis through thumb points
|
||||
thumb_centroid = np.mean(thumb_points, axis=0)
|
||||
thumb_centered = thumb_points - thumb_centroid
|
||||
# Using direction from thumb base to tip for more robustness
|
||||
thumb_direction = landmarks[thumb_tip_idx] - landmarks[thumb_indices[0]]
|
||||
thumb_axis = thumb_direction / np.linalg.norm(thumb_direction)
|
||||
|
||||
# Use SVD again to find direction of maximum variance (principal axis)
|
||||
u, s, vh = np.linalg.svd(thumb_centered)
|
||||
principal_axis = vh[0, :] # First singular vector
|
||||
# Ensure thumb_axis is orthogonal to plane_normal
|
||||
thumb_axis = thumb_axis - np.dot(thumb_axis, plane_normal) * plane_normal
|
||||
thumb_axis = thumb_axis / np.linalg.norm(thumb_axis)
|
||||
|
||||
# Ensure principal axis is a unit vector
|
||||
principal_axis = principal_axis / np.linalg.norm(principal_axis)
|
||||
# Compute third axis as cross product to create orthogonal frame
|
||||
cross_axis = np.cross(plane_normal, thumb_axis)
|
||||
cross_axis = cross_axis / np.linalg.norm(cross_axis)
|
||||
|
||||
# Construct orthogonal vectors for orientation matrix
|
||||
z_axis = normal # Normal to the plane
|
||||
x_axis = principal_axis # Along the thumb
|
||||
|
||||
# Ensure x_axis is orthogonal to z_axis
|
||||
x_axis = x_axis - np.dot(x_axis, z_axis) * z_axis
|
||||
x_axis = x_axis / np.linalg.norm(x_axis)
|
||||
|
||||
# Compute y_axis as cross product to ensure orthogonality
|
||||
y_axis = np.cross(z_axis, x_axis)
|
||||
|
||||
# Create rotation matrix
|
||||
rotation_matrix = np.column_stack([x_axis, y_axis, z_axis])
|
||||
# Create rotation matrix that aligns with the paper's description
|
||||
# z-axis as normal, x-axis along thumb direction
|
||||
rotation_matrix = np.column_stack([thumb_axis, cross_axis, plane_normal])
|
||||
|
||||
# 3. Calculate gripper width
|
||||
gripper_width = np.linalg.norm(thumb_tip - index_tip)
|
||||
|
||||
# Apply percentile threshold to mitigate slippage (as mentioned in the paper)
|
||||
# Store gripper widths in a buffer to compute percentiles
|
||||
if not hasattr(self, "gripper_width_buffer"):
|
||||
self.gripper_width_buffer = []
|
||||
|
||||
self.gripper_width_buffer.append(gripper_width)
|
||||
# Keep only the last 100 values
|
||||
if len(self.gripper_width_buffer) > 100:
|
||||
self.gripper_width_buffer.pop(0)
|
||||
|
||||
# Apply 20th percentile threshold
|
||||
# Apply 20th percentile threshold as specified in the paper
|
||||
if len(self.gripper_width_buffer) > 5: # Need enough samples
|
||||
min_width = np.percentile(self.gripper_width_buffer, 20)
|
||||
if gripper_width < min_width:
|
||||
gripper_width = min_width
|
||||
gripper_width = 0.0 # Fully closed gripper when below threshold
|
||||
else:
|
||||
# Scale gripper_width to robot's specific range
|
||||
gripper_width = min(1.0, gripper_width / MAXIMUM_HAND_WIDTH_MM)
|
||||
|
||||
# Convert from camera frame to robot frame
|
||||
# Note: This requires the extrinsic matrix from camera to robot
|
||||
# If extrinsics are available, uncomment and use this code:
|
||||
# if hasattr(self, "camera_to_robot_transform"):
|
||||
# # Convert position to homogeneous coordinates
|
||||
# pos_homogeneous = np.append(position, 1.0)
|
||||
# # Apply transformation
|
||||
# robot_pos_homogeneous = np.dot(self.camera_to_robot_transform, pos_homogeneous)
|
||||
# position = robot_pos_homogeneous[:3]
|
||||
#
|
||||
# # Convert rotation (special orthogonal transformation)
|
||||
# rotation_in_robot_frame = np.dot(self.camera_to_robot_transform[:3, :3], rotation_matrix)
|
||||
# rotation_matrix = rotation_in_robot_frame
|
||||
|
||||
return position, rotation_matrix, gripper_width
|
||||
|
||||
@ -483,16 +528,16 @@ class HandProcessor:
|
||||
# Process if hand is detected
|
||||
if results.multi_hand_landmarks:
|
||||
for hand_landmarks in results.multi_hand_landmarks:
|
||||
hand_mask = self._create_mask(frame, hand_landmarks)
|
||||
segmented_mask = self._create_mask(frame, hand_landmarks)
|
||||
mask_overlay = frame.copy()
|
||||
mask_overlay[hand_mask > 0] = [0, 0, 255] # Red color for mask
|
||||
mask_overlay[segmented_mask > 0] = [0, 0, 255] # Red color for mask
|
||||
segmented_frame = cv2.addWeighted(frame, 0.7, mask_overlay, 0.3, 0)
|
||||
|
||||
depth_map, depth_vis = self._estimate_depth(frame)
|
||||
depth_colored = cv2.applyColorMap(depth_vis, cv2.COLORMAP_JET)
|
||||
depth_frame = depth_colored.copy()
|
||||
|
||||
cloud = self._create_cloud(depth_map, hand_mask)
|
||||
cloud = self._create_cloud(depth_map, segmented_mask)
|
||||
|
||||
hand_vertices, hand_faces = self._create_mesh(
|
||||
hand_landmarks, (width, height)
|
Loading…
x
Reference in New Issue
Block a user