improve icp by adding a const scale factor

This commit is contained in:
Ethan Clark 2025-03-24 15:18:37 -07:00
parent 1e6722ae44
commit ececd98449

View File

@ -1,23 +1,30 @@
import os
import time
import cv2
import depth_pro
import mediapipe as mp
import torch
import numpy as np
import open3d as o3d
import torch
from PIL import Image
from robot_manager import RobotManager
from sam2.sam2_image_predictor import SAM2ImagePredictor
import mediapipe as mp
from tqdm import tqdm
from collections import deque
from utils.visualizations import *
from sam2.sam2_image_predictor import SAM2ImagePredictor
class HandProcessor:
# TODO: Optimize these constants for better results
HAND_WIDTH_MM = 90.0 # Average width of male hand in mm
CLOUD_Z_SCALE = 5.0
# Maximum expected distance between human thumb and index finger in mm when fully extended.
MAXIMUM_HAND_WIDTH_MM = 100.0
class ProcessHand:
def __init__(self) -> None:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize MediaPipe Hands for hand detection
print("Loading MediaPipe Hands model...")
self.mp_hands = mp.solutions.hands
self.mp_drawing = mp.solutions.drawing_utils
self.mp_drawing_styles = mp.solutions.drawing_styles
@ -28,10 +35,9 @@ class HandProcessor:
static_image_mode=False,
)
# NOTE: Look into better depth estimation models
# Initialize MiDaS for depth estimation
print("Loading MiDaS model...")
self.midas = torch.hub.load("intel-isl/MiDaS", "DPT_Hybrid")
self.midas = torch.hub.load("intel-isl/MiDaS", "DPT_Large")
self.midas.to(self.device)
self.midas.eval()
@ -45,11 +51,17 @@ class HandProcessor:
"facebook/sam2-hiera-large"
)
self.gripper_width_buffer = deque(maxlen=100)
"""
Create a segmentation mask over the hand using SAM2 model
"""
def _create_mask(self, frame: np.ndarray, landmarks: list) -> np.ndarray:
height, width = frame.shape[:2]
# Convert image to RGB for SAM2 model
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Set image in SAM2 predictor
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
self.sam2_predictor.set_image(frame_rgb) # Set image for prediction
@ -61,7 +73,7 @@ class HandProcessor:
input_points = np.array(points)
# Predict mask with point prompts
# Predict mask using point prompts
masks, _, _ = self.sam2_predictor.predict(
point_coords=input_points, # Pass the points as prompts
point_labels=np.ones(
@ -79,7 +91,6 @@ class HandProcessor:
Estimate depth map using MiDaS model
"""
# TODO: Swap MiDaS for ml-depth-pro model
def _estimate_depth(self, image: np.ndarray) -> tuple:
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
@ -97,7 +108,7 @@ class HandProcessor:
align_corners=False,
).squeeze()
# Convert to numpy and normalize to 0-255 for visualization
# Convert to numpy and normalize for visualization
depth_map = prediction.cpu().numpy()
depth_min = depth_map.min()
depth_max = depth_map.max()
@ -105,11 +116,17 @@ class HandProcessor:
return depth_map, depth_map_normalized.astype(np.uint8)
# TODO: Look into better depth scaling
def _create_cloud(self, depth_map: np.ndarray, hand_mask: np.ndarray) -> np.ndarray:
"""
Create a point cloud from combining depth map and segmented mask
by back-projecting to 3D using camera intrinsics and depth values
"""
def _create_cloud(
self, depth_map: np.ndarray, segmented_mask: np.ndarray
) -> np.ndarray:
focal_x, focal_y, center_x, center_y = self.camera_intrinsics
v_coords, u_coords = np.where(hand_mask > 0)
v_coords, u_coords = np.where(segmented_mask > 0)
z_values = depth_map[v_coords, u_coords]
# Filter out zero depth values
@ -118,7 +135,7 @@ class HandProcessor:
v_coords = v_coords[valid_indices]
z_values = z_values[valid_indices]
z_metric = z_values * 0.5
z_metric = z_values * HAND_WIDTH_MM * CLOUD_Z_SCALE / depth_map.max()
# Back-project to 3D using camera intrinsics
x_values = (u_coords - center_x) * z_metric / focal_x
@ -128,15 +145,25 @@ class HandProcessor:
return points
# TODO: Look into better depth scaling
"""
Create hand mesh from hand landmarks
"""
def _create_mesh(self, landmarks: list, image_dims: tuple) -> np.ndarray:
width, height = image_dims
# Extract just z values to understand their range
z_values = [landmark.z for landmark in landmarks.landmark]
z_min = min(z_values)
z_max = max(z_values)
vertices = []
for landmark in landmarks.landmark:
vertices.append(
[landmark.x * width, landmark.y * height, landmark.z * width]
)
# Scale z to same range as HAND_WIDTH_MM
normalized_z = (landmark.z - z_min) / (z_max - z_min + 1e-6)
scaled_z = normalized_z * HAND_WIDTH_MM
vertices.append([landmark.x * width, landmark.y * height, scaled_z])
# Define faces (triangles) connecting landmarks
faces = [
@ -178,7 +205,10 @@ class HandProcessor:
return np.array(dense_vertices), np.array(faces)
# TODO: Improve ICP registration for better alignment
"""
Align hand mesh to point cloud using ICP for accurate 3D reconstruction
"""
def _icp_registration(self, cloud: np.ndarray, vertices: np.ndarray) -> np.ndarray:
source = o3d.geometry.PointCloud()
source.points = o3d.utility.Vector3dVector(vertices)
@ -200,27 +230,39 @@ class HandProcessor:
result = o3d.pipelines.registration.registration_icp(
source,
target,
max_correspondence_distance=0.1, # Increased distance
max_correspondence_distance=0.05,
init=trans_init, # Initial transformation
estimation_method=o3d.pipelines.registration.TransformationEstimationPointToPoint(),
criteria=o3d.pipelines.registration.ICPConvergenceCriteria(
max_iteration=100
), # Increased iterations
),
)
transformation = result.transformation
return transformation
# TODO: Look into better depth scaling
def _refine_landmarks(self, landmarks: list, transform: int, image_dims: tuple):
"""
Refine landmarks based on the icp transformation
"""
def _refine_landmarks(
self, landmarks: list, transform: int, image_dims: tuple
) -> list:
width, height = image_dims
# Extract z range for normalization, similar to _create_mesh
z_values = [landmark.z for landmark in landmarks.landmark]
z_min = min(z_values)
z_max = max(z_values)
refined_landmarks = []
for landmark in landmarks.landmark:
point = np.array(
[landmark.x * width, landmark.y * height, landmark.z * width, 1.0]
)
# Use consistent scaling with _create_mesh
normalized_z = (landmark.z - z_min) / (z_max - z_min + 1e-6)
scaled_z = normalized_z * HAND_WIDTH_MM
point = np.array([landmark.x * width, landmark.y * height, scaled_z, 1.0])
# Apply transformation to 3D point
transformed = np.dot(transform, point)
@ -228,6 +270,7 @@ class HandProcessor:
return refined_landmarks
# TODO: Implement better constraints that limit last joint of each finger to a single DOF
def _apply_constraints(self, landmarks: list):
constrained = np.array(landmarks)
@ -236,8 +279,7 @@ class HandProcessor:
thumb_indices = [1, 2, 3, 4]
index_indices = [5, 6, 7, 8]
# Constrain the last two joints of thumb and index finger
# as mentioned in the paper
# Constrain the last two joints of thumb and index finger as per the paper
for finger_indices in [thumb_indices, index_indices]:
# Get the last three joints (two segments)
if len(finger_indices) >= 3:
@ -250,8 +292,7 @@ class HandProcessor:
dir1 = joint2 - joint1
dir1 = dir1 / np.linalg.norm(dir1)
# Instead of full ball joint, constrain the last joint's direction
# to follow similar direction as the previous segment
# Instead of full ball joint, constrain last joint's direction to follow previous segment
ideal_dir = dir1.copy()
actual_dir = joint3 - joint2
actual_length = np.linalg.norm(actual_dir)
@ -265,8 +306,14 @@ class HandProcessor:
return constrained
def _get_robot_params(self, refined_landmarks):
# Extract keypoints
"""
Extract robot parameters from refined landmarks:
1. Target Position: Midpoint between thumb tip and index tip
2. Target Orientation: Normal to the best-fitting plane of thumb and index finger
3. Gripper Width: Distance between thumb tip and index tip
"""
def _get_robot_params(self, refined_landmarks: list) -> tuple:
landmarks = np.array(refined_landmarks)
# Define indices for specific parts of the hand
@ -293,54 +340,52 @@ class HandProcessor:
# Use SVD to find the normal to the best-fitting plane
u, s, vh = np.linalg.svd(centered_points)
# The normal is the last right singular vector
normal = vh[2, :]
# Ensure normal is a unit vector
normal = normal / np.linalg.norm(normal)
plane_normal = vh[2, :]
plane_normal = plane_normal / np.linalg.norm(plane_normal)
# Fit a principal axis through thumb points
thumb_centroid = np.mean(thumb_points, axis=0)
thumb_centered = thumb_points - thumb_centroid
# Using direction from thumb base to tip for more robustness
thumb_direction = landmarks[thumb_tip_idx] - landmarks[thumb_indices[0]]
thumb_axis = thumb_direction / np.linalg.norm(thumb_direction)
# Use SVD again to find direction of maximum variance (principal axis)
u, s, vh = np.linalg.svd(thumb_centered)
principal_axis = vh[0, :] # First singular vector
# Ensure thumb_axis is orthogonal to plane_normal
thumb_axis = thumb_axis - np.dot(thumb_axis, plane_normal) * plane_normal
thumb_axis = thumb_axis / np.linalg.norm(thumb_axis)
# Ensure principal axis is a unit vector
principal_axis = principal_axis / np.linalg.norm(principal_axis)
# Compute third axis as cross product to create orthogonal frame
cross_axis = np.cross(plane_normal, thumb_axis)
cross_axis = cross_axis / np.linalg.norm(cross_axis)
# Construct orthogonal vectors for orientation matrix
z_axis = normal # Normal to the plane
x_axis = principal_axis # Along the thumb
# Ensure x_axis is orthogonal to z_axis
x_axis = x_axis - np.dot(x_axis, z_axis) * z_axis
x_axis = x_axis / np.linalg.norm(x_axis)
# Compute y_axis as cross product to ensure orthogonality
y_axis = np.cross(z_axis, x_axis)
# Create rotation matrix
rotation_matrix = np.column_stack([x_axis, y_axis, z_axis])
# Create rotation matrix that aligns with the paper's description
# z-axis as normal, x-axis along thumb direction
rotation_matrix = np.column_stack([thumb_axis, cross_axis, plane_normal])
# 3. Calculate gripper width
gripper_width = np.linalg.norm(thumb_tip - index_tip)
# Apply percentile threshold to mitigate slippage (as mentioned in the paper)
# Store gripper widths in a buffer to compute percentiles
if not hasattr(self, "gripper_width_buffer"):
self.gripper_width_buffer = []
self.gripper_width_buffer.append(gripper_width)
# Keep only the last 100 values
if len(self.gripper_width_buffer) > 100:
self.gripper_width_buffer.pop(0)
# Apply 20th percentile threshold
# Apply 20th percentile threshold as specified in the paper
if len(self.gripper_width_buffer) > 5: # Need enough samples
min_width = np.percentile(self.gripper_width_buffer, 20)
if gripper_width < min_width:
gripper_width = min_width
gripper_width = 0.0 # Fully closed gripper when below threshold
else:
# Scale gripper_width to robot's specific range
gripper_width = min(1.0, gripper_width / MAXIMUM_HAND_WIDTH_MM)
# Convert from camera frame to robot frame
# Note: This requires the extrinsic matrix from camera to robot
# If extrinsics are available, uncomment and use this code:
# if hasattr(self, "camera_to_robot_transform"):
# # Convert position to homogeneous coordinates
# pos_homogeneous = np.append(position, 1.0)
# # Apply transformation
# robot_pos_homogeneous = np.dot(self.camera_to_robot_transform, pos_homogeneous)
# position = robot_pos_homogeneous[:3]
#
# # Convert rotation (special orthogonal transformation)
# rotation_in_robot_frame = np.dot(self.camera_to_robot_transform[:3, :3], rotation_matrix)
# rotation_matrix = rotation_in_robot_frame
return position, rotation_matrix, gripper_width
@ -483,16 +528,16 @@ class HandProcessor:
# Process if hand is detected
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
hand_mask = self._create_mask(frame, hand_landmarks)
segmented_mask = self._create_mask(frame, hand_landmarks)
mask_overlay = frame.copy()
mask_overlay[hand_mask > 0] = [0, 0, 255] # Red color for mask
mask_overlay[segmented_mask > 0] = [0, 0, 255] # Red color for mask
segmented_frame = cv2.addWeighted(frame, 0.7, mask_overlay, 0.3, 0)
depth_map, depth_vis = self._estimate_depth(frame)
depth_colored = cv2.applyColorMap(depth_vis, cv2.COLORMAP_JET)
depth_frame = depth_colored.copy()
cloud = self._create_cloud(depth_map, hand_mask)
cloud = self._create_cloud(depth_map, segmented_mask)
hand_vertices, hand_faces = self._create_mesh(
hand_landmarks, (width, height)