open_phantom/phantom/robot_manager.py
Ethan Clark 2bea6dc790 initial commit
2025-03-21 12:51:16 -07:00

158 lines
5.5 KiB
Python

import os
import cv2
import numpy as np
import pybullet as p
from utils.math import *
from utils.handle_urdf import handle_urdf
from scipy.spatial.transform import Rotation as R
class RobotManager:
def __init__(self, urdf_path: str, camera_intrinsics: tuple) -> None:
self.physics_client = p.connect(p.DIRECT)
robot_urdf = handle_urdf(urdf_path)
self.robot_id = self._load_robot(robot_urdf)
self.joint_count = p.getNumJoints(self.robot_id)
self.end_effector_index = self._find_end_effector()
self.fx, self.fy, self.cx, self.cy = camera_intrinsics
# Set up rendering parameters
self.img_width = int(self.cx * 2)
self.img_height = int(self.cy * 2)
# Load the robot URDF into PyBullet
def _load_robot(self, robot_urdf: str) -> int:
try:
robot_id = p.loadURDF(
robot_urdf,
basePosition=[0, 0, 0],
useFixedBase=True,
flags=p.URDF_USE_SELF_COLLISION | p.URDF_USE_INERTIA_FROM_FILE
)
except p.error as e:
print(f"PyBullet error when loading URDF: {e}")
raise e
robot_name = p.getBodyInfo(robot_id)[1].decode('utf-8')
print(f"Successfully loaded {robot_name} robot with ID: {robot_id}")
return robot_id
# NOTE: Only applicable if the robot has one end effector
def _find_end_effector(self) -> int:
assert self.joint_count > 0, "Robot has no joints"
# Keywords to look for in joint names to identify end effector
keywords = ['gripper', 'tool', 'tcp', 'end_effector', 'hand']
for i in range(self.joint_count):
info = p.getJointInfo(self.robot_id, i)
joint_name = info[1].decode('utf-8').lower()
# Check if any keyword is in the joint name
if any(keyword in joint_name for keyword in keywords):
return i
# If no specific end effector found, use the last joint in the chain
return self.joint_count - 1
# TODO: Use inverse kinematics to set the robot pose
def set_robot_pose(self, position: np.ndarray, orientation_vectors: np.ndarray, gripper_width: float) -> None:
pass
# Render the robot in some scene using some camera parameters
def render_robot(self, bg_image=None, camera_params=None):
assert self.robot_id >= 0, "Robot not properly loaded"
# Set up camera parameters
if camera_params is None:
# Default camera setup
cam_target = [0, 0, 0]
cam_distance = 1.0
cam_yaw = 0
cam_pitch = -30
cam_roll = 0
else:
cam_target, cam_distance, cam_yaw, cam_pitch, cam_roll = camera_params
# Compute view matrix
view_matrix = p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=cam_target,
distance=cam_distance,
yaw=cam_yaw,
pitch=cam_pitch,
roll=cam_roll,
upAxisIndex=2
)
# Compute projection matrix
aspect = self.img_width / self.img_height
proj_matrix = p.computeProjectionMatrixFOV(
fov=60,
aspect=aspect,
nearVal=0.01,
farVal=100.0
)
# Render the scene
img_arr = p.getCameraImage(
width=self.img_width,
height=self.img_height,
viewMatrix=view_matrix,
projectionMatrix=proj_matrix,
renderer=p.ER_BULLET_HARDWARE_OPENGL
)
# Extract RGB and depth
rgb = np.reshape(img_arr[2], (self.img_height, self.img_width, 4))
rgb = rgb[:, :, :3] # Remove alpha channel
depth = np.reshape(img_arr[3], (self.img_height, self.img_width))
# If background image is provided, composite
if bg_image is not None:
# Resize background if needed
bg_h, bg_w = bg_image.shape[:2]
if bg_w != self.img_width or bg_h != self.img_height:
bg_resized = cv2.resize(bg_image, (self.img_width, self.img_height))
else:
bg_resized = bg_image
# Create mask from depth
mask = (depth < 0.99).astype(np.float32)
mask = np.stack([mask, mask, mask], axis=2)
# Composite
composite = bg_resized * (1 - mask) + rgb * mask
return composite.astype(np.uint8)
return rgb.astype(np.uint8)
def __del__(self) -> None:
if hasattr(self, 'physics_client'):
try:
p.disconnect(self.physics_client)
except:
pass
if __name__ == "__main__":
cwd = os.getcwd()
urdf_path = os.path.join(cwd, "notebook/phantom/urdf/SO_5DOF_ARM100_05d.SLDASM/urdf/SO_5DOF_ARM100_05d.SLDASM.urdf")
camera_intrinsics = (320, 240, 320, 240) # Random intrinsics for example
robot_vis = RobotManager(urdf_path, camera_intrinsics)
rendered_image = robot_vis.render_robot()
# Option 1: Display the image using OpenCV
cv2.imshow("Robot Render", rendered_image)
cv2.waitKey(0) # Wait for a key press
cv2.destroyAllWindows()
# Option 2: Save the image to a file
output_path = "robot_render.png"
cv2.imwrite(output_path, rendered_image)
print(f"Render saved to {output_path}")