open_phantom/phantom/utils/visualizations.py
Ethan Clark 2bea6dc790 initial commit
2025-03-21 12:51:16 -07:00

263 lines
12 KiB
Python

import cv2
import numpy as np
def visualize_mesh(frame, hand_vertices, faces):
"""Visualize the hand mesh on the frame"""
mesh_vis = frame.copy()
height, width = frame.shape[:2]
# Draw the base vertices of the mesh (original landmarks)
for i in range(21):
pt = tuple(map(int, hand_vertices[i][:2]))
if 0 <= pt[0] < width and 0 <= pt[1] < height:
cv2.circle(mesh_vis, pt, 4, (255, 0, 0), -1) # Red circles for base vertices
# Draw the interpolated vertices
for i in range(21, len(hand_vertices)):
pt = tuple(map(int, hand_vertices[i][:2]))
if 0 <= pt[0] < width and 0 <= pt[1] < height:
cv2.circle(mesh_vis, pt, 2, (0, 255, 255), -1) # Yellow circles for interpolated vertices
# Draw the faces of the mesh
for face in faces:
if len(face) == 3: # Triangle face
pt1 = tuple(map(int, hand_vertices[face[0]][:2]))
pt2 = tuple(map(int, hand_vertices[face[1]][:2]))
pt3 = tuple(map(int, hand_vertices[face[2]][:2]))
if (0 <= pt1[0] < width and 0 <= pt1[1] < height and
0 <= pt2[0] < width and 0 <= pt2[1] < height and
0 <= pt3[0] < width and 0 <= pt3[1] < height):
cv2.line(mesh_vis, pt1, pt2, (0, 255, 0), 1) # Green lines for mesh edges
cv2.line(mesh_vis, pt2, pt3, (0, 255, 0), 1)
cv2.line(mesh_vis, pt3, pt1, (0, 255, 0), 1)
# Add explanation text
cv2.putText(mesh_vis, "Red: Base vertices", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0), 2)
cv2.putText(mesh_vis, "Yellow: Interpolated vertices", (10, 60),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
cv2.putText(mesh_vis, "Green: Mesh edges", (10, 90),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
return mesh_vis
def visualize_registration(cloud, vertices, icp_transform):
"""Visualize the ICP registration process"""
height, width = 480, 640 # Fixed size visualization
reg_vis = np.ones((height, width, 3), dtype=np.uint8) * 255 # White background
# Define visualization boundaries
margin = 50
view_width = width - 2 * margin
view_height = height - 2 * margin
# Find 2D min/max values for scaling
all_points_2d = np.vstack([cloud[:, :2], vertices[:, :2]])
min_vals = np.min(all_points_2d, axis=0)
max_vals = np.max(all_points_2d, axis=0)
# Function to scale points to fit visualization
def scale_point(point):
scaled = (point - min_vals) / (max_vals - min_vals)
x = int(scaled[0] * view_width) + margin
y = int(scaled[1] * view_height) + margin
return (x, y)
# Draw original point cloud (red)
for point in cloud[::10]: # Downsample for visualization
pt = scale_point(point[:2])
cv2.circle(reg_vis, pt, 1, (0, 0, 255), -1) # Red dots
# Draw original mesh vertices (blue)
for vertex in vertices:
pt = scale_point(vertex[:2])
cv2.circle(reg_vis, pt, 2, (255, 0, 0), -1) # Blue dots
# Apply transformation to mesh vertices
transformed_vertices = []
for vertex in vertices:
# Convert to homogeneous coordinates
v_hom = np.append(vertex, 1.0)
# Apply transformation
v_transformed = np.dot(icp_transform, v_hom)
transformed_vertices.append(v_transformed[:3])
# Draw transformed mesh vertices (green)
for vertex in transformed_vertices:
pt = scale_point(vertex[:2])
cv2.circle(reg_vis, pt, 2, (0, 255, 0), -1) # Green dots
# Add transformation matrix display
cv2.putText(reg_vis, "ICP Transformation Matrix:", (10, height - 120),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
for i in range(4):
matrix_text = f"[{icp_transform[i][0]:.2f}, {icp_transform[i][1]:.2f}, {icp_transform[i][2]:.2f}, {icp_transform[i][3]:.2f}]"
cv2.putText(reg_vis, matrix_text, (10, height - 90 + i * 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 0, 0), 1)
# Add legend
cv2.putText(reg_vis, "Red: Point Cloud", (width - 200, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
cv2.putText(reg_vis, "Blue: Original Mesh", (width - 200, 60),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
cv2.putText(reg_vis, "Green: Transformed Mesh", (width - 200, 90),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
return reg_vis
def visualize_constraints(frame, refined_landmarks, constrained_landmarks, camera_intrinsics):
"""Visualize before and after applying anatomical constraints"""
constraints_vis = frame.copy()
height, width = frame.shape[:2]
focal_x, focal_y, center_x, center_y = camera_intrinsics
# Define finger indices
thumb_indices = [1, 2, 3, 4]
index_indices = [5, 6, 7, 8]
highlighted_indices = thumb_indices + index_indices
# Draw original refined landmarks
for i, landmark in enumerate(refined_landmarks):
x, y, z = landmark
if z > 0:
u = int(x * focal_x / z + center_x)
v = int(y * focal_y / z + center_y)
if 0 <= u < width and 0 <= v < height:
if i in highlighted_indices:
# Draw larger circles for thumb and index fingers (the constrained ones)
cv2.circle(constraints_vis, (u, v), 5, (0, 0, 255), -1) # Red circles
else:
cv2.circle(constraints_vis, (u, v), 3, (0, 0, 255), -1)
# Draw connections for original landmarks
for i in range(len(refined_landmarks) - 1):
if i + 1 in thumb_indices and i in thumb_indices:
# Draw thumb connections
start = refined_landmarks[i]
end = refined_landmarks[i + 1]
if start[2] > 0 and end[2] > 0:
start_u = int(start[0] * focal_x / start[2] + center_x)
start_v = int(start[1] * focal_y / start[2] + center_y)
end_u = int(end[0] * focal_x / end[2] + center_x)
end_v = int(end[1] * focal_y / end[2] + center_y)
if (0 <= start_u < width and 0 <= start_v < height and
0 <= end_u < width and 0 <= end_v < height):
cv2.line(constraints_vis, (start_u, start_v), (end_u, end_v), (0, 0, 255), 2)
# Draw constrained landmarks
for i, landmark in enumerate(constrained_landmarks):
x, y, z = landmark
if z > 0:
u = int(x * focal_x / z + center_x)
v = int(y * focal_y / z + center_y)
if 0 <= u < width and 0 <= v < height:
if i in highlighted_indices:
# Draw larger circles for thumb and index fingers
cv2.circle(constraints_vis, (u, v), 5, (0, 255, 0), -1) # Green circles
else:
cv2.circle(constraints_vis, (u, v), 3, (0, 255, 0), -1)
# Draw connections for constrained landmarks
for i in range(len(constrained_landmarks) - 1):
if i + 1 in thumb_indices and i in thumb_indices:
# Draw thumb connections
start = constrained_landmarks[i]
end = constrained_landmarks[i + 1]
if start[2] > 0 and end[2] > 0:
start_u = int(start[0] * focal_x / start[2] + center_x)
start_v = int(start[1] * focal_y / start[2] + center_y)
end_u = int(end[0] * focal_x / end[2] + center_x)
end_v = int(end[1] * focal_y / end[2] + center_y)
if (0 <= start_u < width and 0 <= start_v < height and
0 <= end_u < width and 0 <= end_v < height):
cv2.line(constraints_vis, (start_u, start_v), (end_u, end_v), (0, 255, 0), 2)
# Add legend
cv2.putText(constraints_vis, "Red: Before constraints", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(constraints_vis, "Green: After constraints", (10, 60),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
return constraints_vis
def visualize_robot_params(frame, position, direction, normal, gripper_width, camera_intrinsics):
"""Visualize robot parameters (position, orientation, gripper width)"""
robot_vis = frame.copy()
height, width = frame.shape[:2]
focal_x, focal_y, center_x, center_y = camera_intrinsics
# Project position to image coordinates
x, y, z = position
if z > 0:
u = int(x * focal_x / z + center_x)
v = int(y * focal_y / z + center_y)
if 0 <= u < width and 0 <= v < height:
# Draw end effector position
cv2.circle(robot_vis, (u, v), 10, (255, 0, 0), -1) # Blue circle
# Draw direction vector (X axis)
dx, dy, dz = direction
scale = 50 # Scale for better visualization
end_u = int((x + dx * scale) * focal_x / (z + dz * scale) + center_x)
end_v = int((y + dy * scale) * focal_y / (z + dz * scale) + center_y)
if 0 <= end_u < width and 0 <= end_v < height:
cv2.line(robot_vis, (u, v), (end_u, end_v), (0, 0, 255), 2) # Red line (X axis)
cv2.putText(robot_vis, "X", (end_u, end_v),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# Draw normal vector (Z axis)
nx, ny, nz = normal
end_u = int((x + nx * scale) * focal_x / (z + nz * scale) + center_x)
end_v = int((y + ny * scale) * focal_y / (z + nz * scale) + center_y)
if 0 <= end_u < width and 0 <= end_v < height:
cv2.line(robot_vis, (u, v), (end_u, end_v), (0, 255, 0), 2) # Green line (Z axis)
cv2.putText(robot_vis, "Z", (end_u, end_v),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Calculate Y axis (cross product of Z and X for right-hand coordinate system)
y_axis = np.cross(normal, direction)
y_axis = y_axis / np.linalg.norm(y_axis)
yx, yy, yz = y_axis
end_u = int((x + yx * scale) * focal_x / (z + yz * scale) + center_x)
end_v = int((y + yy * scale) * focal_y / (z + yz * scale) + center_y)
if 0 <= end_u < width and 0 <= end_v < height:
cv2.line(robot_vis, (u, v), (end_u, end_v), (255, 0, 0), 2) # Blue line (Y axis)
cv2.putText(robot_vis, "Y", (end_u, end_v),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
# Visualize gripper width
gripper_radius = int(gripper_width * 100) # Scale for better visualization
cv2.circle(robot_vis, (u, v), gripper_radius, (0, 255, 255), 2) # Yellow circle
# Add parameter values as text
y_offset = height - 160
cv2.putText(robot_vis, f"Position: ({x:.2f}, {y:.2f}, {z:.2f})", (10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
y_offset += 30
cv2.putText(robot_vis, f"Direction: ({dx:.2f}, {dy:.2f}, {dz:.2f})", (10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
y_offset += 30
cv2.putText(robot_vis, f"Normal: ({nx:.2f}, {ny:.2f}, {nz:.2f})", (10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
y_offset += 30
cv2.putText(robot_vis, f"Gripper Width: {gripper_width:.2f}", (10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 1)
return robot_vis