mirror of
https://github.com/luckyrobots/open_phantom.git
synced 2025-04-04 02:52:18 +00:00
446 lines
14 KiB
Python
446 lines
14 KiB
Python
import cv2
|
|
import numpy as np
|
|
|
|
|
|
def visualize_mesh(
|
|
frame: np.ndarray, hand_vertices: np.ndarray, faces: np.ndarray
|
|
) -> np.ndarray:
|
|
|
|
mesh_vis = frame.copy()
|
|
height, width = frame.shape[:2]
|
|
|
|
# Draw the base vertices of the mesh (original landmarks)
|
|
for i in range(21):
|
|
pt = tuple(map(int, hand_vertices[i][:2]))
|
|
if 0 <= pt[0] < width and 0 <= pt[1] < height:
|
|
cv2.circle(
|
|
mesh_vis, pt, 4, (255, 0, 0), -1
|
|
) # Red circles for base vertices
|
|
|
|
# Draw the interpolated vertices
|
|
for i in range(21, len(hand_vertices)):
|
|
pt = tuple(map(int, hand_vertices[i][:2]))
|
|
if 0 <= pt[0] < width and 0 <= pt[1] < height:
|
|
cv2.circle(
|
|
mesh_vis, pt, 2, (0, 255, 255), -1
|
|
) # Yellow circles for interpolated vertices
|
|
|
|
# Draw the faces of the mesh
|
|
for face in faces:
|
|
if len(face) == 3: # Triangle face
|
|
pt1 = tuple(map(int, hand_vertices[face[0]][:2]))
|
|
pt2 = tuple(map(int, hand_vertices[face[1]][:2]))
|
|
pt3 = tuple(map(int, hand_vertices[face[2]][:2]))
|
|
|
|
if (
|
|
0 <= pt1[0] < width
|
|
and 0 <= pt1[1] < height
|
|
and 0 <= pt2[0] < width
|
|
and 0 <= pt2[1] < height
|
|
and 0 <= pt3[0] < width
|
|
and 0 <= pt3[1] < height
|
|
):
|
|
cv2.line(
|
|
mesh_vis, pt1, pt2, (0, 255, 0), 1
|
|
) # Green lines for mesh edges
|
|
cv2.line(mesh_vis, pt2, pt3, (0, 255, 0), 1)
|
|
cv2.line(mesh_vis, pt3, pt1, (0, 255, 0), 1)
|
|
|
|
# Add explanation text
|
|
cv2.putText(
|
|
mesh_vis,
|
|
"Red: Base vertices",
|
|
(10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.6,
|
|
(255, 0, 0),
|
|
2,
|
|
)
|
|
cv2.putText(
|
|
mesh_vis,
|
|
"Yellow: Interpolated vertices",
|
|
(10, 60),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.6,
|
|
(0, 255, 255),
|
|
2,
|
|
)
|
|
cv2.putText(
|
|
mesh_vis,
|
|
"Green: Mesh edges",
|
|
(10, 90),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.6,
|
|
(0, 255, 0),
|
|
2,
|
|
)
|
|
|
|
return mesh_vis
|
|
|
|
|
|
def visualize_registration(
|
|
cloud: np.ndarray, vertices: np.ndarray, icp_transform: np.ndarray
|
|
) -> np.ndarray:
|
|
|
|
height, width = 480, 640 # Fixed size visualization
|
|
reg_vis = np.ones((height, width, 3), dtype=np.uint8) * 255 # White background
|
|
|
|
# Define visualization boundaries
|
|
margin = 50
|
|
view_width = width - 2 * margin
|
|
view_height = height - 2 * margin
|
|
|
|
# Find 2D min/max values for scaling
|
|
all_points_2d = np.vstack([cloud[:, :2], vertices[:, :2]])
|
|
min_vals = np.min(all_points_2d, axis=0)
|
|
max_vals = np.max(all_points_2d, axis=0)
|
|
|
|
# Function to scale points to fit visualization
|
|
def scale_point(point: np.ndarray) -> tuple:
|
|
scaled = (point - min_vals) / (max_vals - min_vals)
|
|
x = int(scaled[0] * view_width) + margin
|
|
y = int(scaled[1] * view_height) + margin
|
|
return (x, y)
|
|
|
|
# Draw original point cloud (red)
|
|
for point in cloud[::10]: # Downsample for visualization
|
|
pt = scale_point(point[:2])
|
|
cv2.circle(reg_vis, pt, 1, (0, 0, 255), -1) # Red dots
|
|
|
|
# Draw original mesh vertices (blue)
|
|
for vertex in vertices:
|
|
pt = scale_point(vertex[:2])
|
|
cv2.circle(reg_vis, pt, 2, (255, 0, 0), -1) # Blue dots
|
|
|
|
# Apply transformation to mesh vertices
|
|
transformed_vertices = []
|
|
for vertex in vertices:
|
|
# Convert to homogeneous coordinates
|
|
v_hom = np.append(vertex, 1.0)
|
|
# Apply transformation
|
|
v_transformed = np.dot(icp_transform, v_hom)
|
|
transformed_vertices.append(v_transformed[:3])
|
|
|
|
# Draw transformed mesh vertices (green)
|
|
for vertex in transformed_vertices:
|
|
pt = scale_point(vertex[:2])
|
|
cv2.circle(reg_vis, pt, 2, (0, 255, 0), -1) # Green dots
|
|
|
|
# Add transformation matrix display
|
|
cv2.putText(
|
|
reg_vis,
|
|
"ICP Transformation Matrix:",
|
|
(10, height - 120),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(0, 0, 0),
|
|
1,
|
|
)
|
|
|
|
for i in range(4):
|
|
matrix_text = f"[{icp_transform[i][0]:.2f}, {icp_transform[i][1]:.2f}, {icp_transform[i][2]:.2f}, {icp_transform[i][3]:.2f}]"
|
|
cv2.putText(
|
|
reg_vis,
|
|
matrix_text,
|
|
(10, height - 90 + i * 20),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.4,
|
|
(0, 0, 0),
|
|
1,
|
|
)
|
|
|
|
# Add legend
|
|
cv2.putText(
|
|
reg_vis,
|
|
"Red: Point Cloud",
|
|
(width - 200, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(0, 0, 255),
|
|
1,
|
|
)
|
|
cv2.putText(
|
|
reg_vis,
|
|
"Blue: Original Mesh",
|
|
(width - 200, 60),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(255, 0, 0),
|
|
1,
|
|
)
|
|
cv2.putText(
|
|
reg_vis,
|
|
"Green: Transformed Mesh",
|
|
(width - 200, 90),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(0, 255, 0),
|
|
1,
|
|
)
|
|
|
|
return reg_vis
|
|
|
|
|
|
def visualize_constraints(
|
|
frame: np.ndarray,
|
|
refined_landmarks: list,
|
|
constrained_landmarks: np.ndarray,
|
|
camera_intrinsics: tuple,
|
|
) -> np.ndarray:
|
|
|
|
constraints_vis = frame.copy()
|
|
height, width = frame.shape[:2]
|
|
focal_x, focal_y, center_x, center_y = camera_intrinsics
|
|
|
|
# Define finger indices
|
|
thumb_indices = [1, 2, 3, 4]
|
|
index_indices = [5, 6, 7, 8]
|
|
highlighted_indices = thumb_indices + index_indices
|
|
|
|
# Draw original refined landmarks
|
|
for i, landmark in enumerate(refined_landmarks):
|
|
x, y, z = landmark
|
|
if z > 0:
|
|
u = int(x * focal_x / z + center_x)
|
|
v = int(y * focal_y / z + center_y)
|
|
|
|
if 0 <= u < width and 0 <= v < height:
|
|
if i in highlighted_indices:
|
|
# Draw larger circles for thumb and index fingers (the constrained ones)
|
|
cv2.circle(
|
|
constraints_vis, (u, v), 5, (0, 0, 255), -1
|
|
) # Red circles
|
|
else:
|
|
cv2.circle(constraints_vis, (u, v), 3, (0, 0, 255), -1)
|
|
|
|
# Draw connections for original landmarks
|
|
for i in range(len(refined_landmarks) - 1):
|
|
if i + 1 in thumb_indices and i in thumb_indices:
|
|
# Draw thumb connections
|
|
start = refined_landmarks[i]
|
|
end = refined_landmarks[i + 1]
|
|
|
|
if start[2] > 0 and end[2] > 0:
|
|
start_u = int(start[0] * focal_x / start[2] + center_x)
|
|
start_v = int(start[1] * focal_y / start[2] + center_y)
|
|
end_u = int(end[0] * focal_x / end[2] + center_x)
|
|
end_v = int(end[1] * focal_y / end[2] + center_y)
|
|
|
|
if (
|
|
0 <= start_u < width
|
|
and 0 <= start_v < height
|
|
and 0 <= end_u < width
|
|
and 0 <= end_v < height
|
|
):
|
|
cv2.line(
|
|
constraints_vis,
|
|
(start_u, start_v),
|
|
(end_u, end_v),
|
|
(0, 0, 255),
|
|
2,
|
|
)
|
|
|
|
# Draw constrained landmarks
|
|
for i, landmark in enumerate(constrained_landmarks):
|
|
x, y, z = landmark
|
|
if z > 0:
|
|
u = int(x * focal_x / z + center_x)
|
|
v = int(y * focal_y / z + center_y)
|
|
|
|
if 0 <= u < width and 0 <= v < height:
|
|
if i in highlighted_indices:
|
|
# Draw larger circles for thumb and index fingers
|
|
cv2.circle(
|
|
constraints_vis, (u, v), 5, (0, 255, 0), -1
|
|
) # Green circles
|
|
else:
|
|
cv2.circle(constraints_vis, (u, v), 3, (0, 255, 0), -1)
|
|
|
|
# Draw connections for constrained landmarks
|
|
for i in range(len(constrained_landmarks) - 1):
|
|
if i + 1 in thumb_indices and i in thumb_indices:
|
|
# Draw thumb connections
|
|
start = constrained_landmarks[i]
|
|
end = constrained_landmarks[i + 1]
|
|
|
|
if start[2] > 0 and end[2] > 0:
|
|
start_u = int(start[0] * focal_x / start[2] + center_x)
|
|
start_v = int(start[1] * focal_y / start[2] + center_y)
|
|
end_u = int(end[0] * focal_x / end[2] + center_x)
|
|
end_v = int(end[1] * focal_y / end[2] + center_y)
|
|
|
|
if (
|
|
0 <= start_u < width
|
|
and 0 <= start_v < height
|
|
and 0 <= end_u < width
|
|
and 0 <= end_v < height
|
|
):
|
|
cv2.line(
|
|
constraints_vis,
|
|
(start_u, start_v),
|
|
(end_u, end_v),
|
|
(0, 255, 0),
|
|
2,
|
|
)
|
|
|
|
# Add legend
|
|
cv2.putText(
|
|
constraints_vis,
|
|
"Red: Before constraints",
|
|
(10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.7,
|
|
(0, 0, 255),
|
|
2,
|
|
)
|
|
cv2.putText(
|
|
constraints_vis,
|
|
"Green: After constraints",
|
|
(10, 60),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.7,
|
|
(0, 255, 0),
|
|
2,
|
|
)
|
|
|
|
return constraints_vis
|
|
|
|
|
|
def visualize_robot_params(
|
|
frame: np.ndarray,
|
|
position: np.ndarray,
|
|
orientation_matrix: np.ndarray,
|
|
gripper_width: float,
|
|
camera_intrinsics: tuple,
|
|
) -> np.ndarray:
|
|
|
|
robot_vis = frame.copy()
|
|
height, width = frame.shape[:2]
|
|
focal_x, focal_y, center_x, center_y = camera_intrinsics
|
|
|
|
# Extract axes from orientation matrix
|
|
x_axis = orientation_matrix[:, 0] # First column (principal axis)
|
|
y_axis = orientation_matrix[:, 1] # Second column
|
|
z_axis = orientation_matrix[:, 2] # Third column (normal)
|
|
|
|
# Project position to image coordinates
|
|
x, y, z = position
|
|
if z > 0:
|
|
u = int(x * focal_x / z + center_x)
|
|
v = int(y * focal_y / z + center_y)
|
|
|
|
if 0 <= u < width and 0 <= v < height:
|
|
# Draw end effector position
|
|
cv2.circle(robot_vis, (u, v), 10, (255, 0, 0), -1) # Blue circle
|
|
|
|
# Draw X axis (principal axis)
|
|
dx, dy, dz = x_axis
|
|
scale = 50 # Scale for better visualization
|
|
end_u = int((x + dx * scale) * focal_x / (z + dz * scale) + center_x)
|
|
end_v = int((y + dy * scale) * focal_y / (z + dz * scale) + center_y)
|
|
|
|
if 0 <= end_u < width and 0 <= end_v < height:
|
|
cv2.line(
|
|
robot_vis, (u, v), (end_u, end_v), (0, 0, 255), 2
|
|
) # Red line (X axis)
|
|
cv2.putText(
|
|
robot_vis,
|
|
"X",
|
|
(end_u, end_v),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(0, 0, 255),
|
|
2,
|
|
)
|
|
|
|
# Draw Z axis (normal)
|
|
nx, ny, nz = z_axis
|
|
end_u = int((x + nx * scale) * focal_x / (z + nz * scale) + center_x)
|
|
end_v = int((y + ny * scale) * focal_y / (z + nz * scale) + center_y)
|
|
|
|
if 0 <= end_u < width and 0 <= end_v < height:
|
|
cv2.line(
|
|
robot_vis, (u, v), (end_u, end_v), (0, 255, 0), 2
|
|
) # Green line (Z axis)
|
|
cv2.putText(
|
|
robot_vis,
|
|
"Z",
|
|
(end_u, end_v),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(0, 255, 0),
|
|
2,
|
|
)
|
|
|
|
# Draw Y axis
|
|
yx, yy, yz = y_axis
|
|
end_u = int((x + yx * scale) * focal_x / (z + yz * scale) + center_x)
|
|
end_v = int((y + yy * scale) * focal_y / (z + yz * scale) + center_y)
|
|
|
|
if 0 <= end_u < width and 0 <= end_v < height:
|
|
cv2.line(
|
|
robot_vis, (u, v), (end_u, end_v), (255, 0, 0), 2
|
|
) # Blue line (Y axis)
|
|
cv2.putText(
|
|
robot_vis,
|
|
"Y",
|
|
(end_u, end_v),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(255, 0, 0),
|
|
2,
|
|
)
|
|
|
|
# Visualize gripper width
|
|
gripper_radius = int(gripper_width * 100) # Scale for better visualization
|
|
cv2.circle(
|
|
robot_vis, (u, v), gripper_radius, (0, 255, 255), 2
|
|
) # Yellow circle
|
|
|
|
# Add parameter values as text
|
|
y_offset = height - 160
|
|
cv2.putText(
|
|
robot_vis,
|
|
f"Position: ({x:.2f}, {y:.2f}, {z:.2f})",
|
|
(10, y_offset),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(255, 255, 255),
|
|
1,
|
|
)
|
|
|
|
y_offset += 30
|
|
cv2.putText(
|
|
robot_vis,
|
|
f"X axis: ({x_axis[0]:.2f}, {x_axis[1]:.2f}, {x_axis[2]:.2f})",
|
|
(10, y_offset),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(0, 0, 255),
|
|
1,
|
|
)
|
|
|
|
y_offset += 30
|
|
cv2.putText(
|
|
robot_vis,
|
|
f"Z axis: ({z_axis[0]:.2f}, {z_axis[1]:.2f}, {z_axis[2]:.2f})",
|
|
(10, y_offset),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(0, 255, 0),
|
|
1,
|
|
)
|
|
|
|
y_offset += 30
|
|
cv2.putText(
|
|
robot_vis,
|
|
f"Gripper Width: {gripper_width:.2f}",
|
|
(10, y_offset),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.5,
|
|
(0, 255, 255),
|
|
1,
|
|
)
|
|
|
|
return robot_vis
|