open_phantom/open_phantom/utils/visualizations.py
Ethan Clark 4596862692 add typing to visualizations
2025-03-24 15:17:42 -07:00

446 lines
14 KiB
Python

import cv2
import numpy as np
def visualize_mesh(
frame: np.ndarray, hand_vertices: np.ndarray, faces: np.ndarray
) -> np.ndarray:
mesh_vis = frame.copy()
height, width = frame.shape[:2]
# Draw the base vertices of the mesh (original landmarks)
for i in range(21):
pt = tuple(map(int, hand_vertices[i][:2]))
if 0 <= pt[0] < width and 0 <= pt[1] < height:
cv2.circle(
mesh_vis, pt, 4, (255, 0, 0), -1
) # Red circles for base vertices
# Draw the interpolated vertices
for i in range(21, len(hand_vertices)):
pt = tuple(map(int, hand_vertices[i][:2]))
if 0 <= pt[0] < width and 0 <= pt[1] < height:
cv2.circle(
mesh_vis, pt, 2, (0, 255, 255), -1
) # Yellow circles for interpolated vertices
# Draw the faces of the mesh
for face in faces:
if len(face) == 3: # Triangle face
pt1 = tuple(map(int, hand_vertices[face[0]][:2]))
pt2 = tuple(map(int, hand_vertices[face[1]][:2]))
pt3 = tuple(map(int, hand_vertices[face[2]][:2]))
if (
0 <= pt1[0] < width
and 0 <= pt1[1] < height
and 0 <= pt2[0] < width
and 0 <= pt2[1] < height
and 0 <= pt3[0] < width
and 0 <= pt3[1] < height
):
cv2.line(
mesh_vis, pt1, pt2, (0, 255, 0), 1
) # Green lines for mesh edges
cv2.line(mesh_vis, pt2, pt3, (0, 255, 0), 1)
cv2.line(mesh_vis, pt3, pt1, (0, 255, 0), 1)
# Add explanation text
cv2.putText(
mesh_vis,
"Red: Base vertices",
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(255, 0, 0),
2,
)
cv2.putText(
mesh_vis,
"Yellow: Interpolated vertices",
(10, 60),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(0, 255, 255),
2,
)
cv2.putText(
mesh_vis,
"Green: Mesh edges",
(10, 90),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(0, 255, 0),
2,
)
return mesh_vis
def visualize_registration(
cloud: np.ndarray, vertices: np.ndarray, icp_transform: np.ndarray
) -> np.ndarray:
height, width = 480, 640 # Fixed size visualization
reg_vis = np.ones((height, width, 3), dtype=np.uint8) * 255 # White background
# Define visualization boundaries
margin = 50
view_width = width - 2 * margin
view_height = height - 2 * margin
# Find 2D min/max values for scaling
all_points_2d = np.vstack([cloud[:, :2], vertices[:, :2]])
min_vals = np.min(all_points_2d, axis=0)
max_vals = np.max(all_points_2d, axis=0)
# Function to scale points to fit visualization
def scale_point(point: np.ndarray) -> tuple:
scaled = (point - min_vals) / (max_vals - min_vals)
x = int(scaled[0] * view_width) + margin
y = int(scaled[1] * view_height) + margin
return (x, y)
# Draw original point cloud (red)
for point in cloud[::10]: # Downsample for visualization
pt = scale_point(point[:2])
cv2.circle(reg_vis, pt, 1, (0, 0, 255), -1) # Red dots
# Draw original mesh vertices (blue)
for vertex in vertices:
pt = scale_point(vertex[:2])
cv2.circle(reg_vis, pt, 2, (255, 0, 0), -1) # Blue dots
# Apply transformation to mesh vertices
transformed_vertices = []
for vertex in vertices:
# Convert to homogeneous coordinates
v_hom = np.append(vertex, 1.0)
# Apply transformation
v_transformed = np.dot(icp_transform, v_hom)
transformed_vertices.append(v_transformed[:3])
# Draw transformed mesh vertices (green)
for vertex in transformed_vertices:
pt = scale_point(vertex[:2])
cv2.circle(reg_vis, pt, 2, (0, 255, 0), -1) # Green dots
# Add transformation matrix display
cv2.putText(
reg_vis,
"ICP Transformation Matrix:",
(10, height - 120),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 0),
1,
)
for i in range(4):
matrix_text = f"[{icp_transform[i][0]:.2f}, {icp_transform[i][1]:.2f}, {icp_transform[i][2]:.2f}, {icp_transform[i][3]:.2f}]"
cv2.putText(
reg_vis,
matrix_text,
(10, height - 90 + i * 20),
cv2.FONT_HERSHEY_SIMPLEX,
0.4,
(0, 0, 0),
1,
)
# Add legend
cv2.putText(
reg_vis,
"Red: Point Cloud",
(width - 200, 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 255),
1,
)
cv2.putText(
reg_vis,
"Blue: Original Mesh",
(width - 200, 60),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 0, 0),
1,
)
cv2.putText(
reg_vis,
"Green: Transformed Mesh",
(width - 200, 90),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 255, 0),
1,
)
return reg_vis
def visualize_constraints(
frame: np.ndarray,
refined_landmarks: list,
constrained_landmarks: np.ndarray,
camera_intrinsics: tuple,
) -> np.ndarray:
constraints_vis = frame.copy()
height, width = frame.shape[:2]
focal_x, focal_y, center_x, center_y = camera_intrinsics
# Define finger indices
thumb_indices = [1, 2, 3, 4]
index_indices = [5, 6, 7, 8]
highlighted_indices = thumb_indices + index_indices
# Draw original refined landmarks
for i, landmark in enumerate(refined_landmarks):
x, y, z = landmark
if z > 0:
u = int(x * focal_x / z + center_x)
v = int(y * focal_y / z + center_y)
if 0 <= u < width and 0 <= v < height:
if i in highlighted_indices:
# Draw larger circles for thumb and index fingers (the constrained ones)
cv2.circle(
constraints_vis, (u, v), 5, (0, 0, 255), -1
) # Red circles
else:
cv2.circle(constraints_vis, (u, v), 3, (0, 0, 255), -1)
# Draw connections for original landmarks
for i in range(len(refined_landmarks) - 1):
if i + 1 in thumb_indices and i in thumb_indices:
# Draw thumb connections
start = refined_landmarks[i]
end = refined_landmarks[i + 1]
if start[2] > 0 and end[2] > 0:
start_u = int(start[0] * focal_x / start[2] + center_x)
start_v = int(start[1] * focal_y / start[2] + center_y)
end_u = int(end[0] * focal_x / end[2] + center_x)
end_v = int(end[1] * focal_y / end[2] + center_y)
if (
0 <= start_u < width
and 0 <= start_v < height
and 0 <= end_u < width
and 0 <= end_v < height
):
cv2.line(
constraints_vis,
(start_u, start_v),
(end_u, end_v),
(0, 0, 255),
2,
)
# Draw constrained landmarks
for i, landmark in enumerate(constrained_landmarks):
x, y, z = landmark
if z > 0:
u = int(x * focal_x / z + center_x)
v = int(y * focal_y / z + center_y)
if 0 <= u < width and 0 <= v < height:
if i in highlighted_indices:
# Draw larger circles for thumb and index fingers
cv2.circle(
constraints_vis, (u, v), 5, (0, 255, 0), -1
) # Green circles
else:
cv2.circle(constraints_vis, (u, v), 3, (0, 255, 0), -1)
# Draw connections for constrained landmarks
for i in range(len(constrained_landmarks) - 1):
if i + 1 in thumb_indices and i in thumb_indices:
# Draw thumb connections
start = constrained_landmarks[i]
end = constrained_landmarks[i + 1]
if start[2] > 0 and end[2] > 0:
start_u = int(start[0] * focal_x / start[2] + center_x)
start_v = int(start[1] * focal_y / start[2] + center_y)
end_u = int(end[0] * focal_x / end[2] + center_x)
end_v = int(end[1] * focal_y / end[2] + center_y)
if (
0 <= start_u < width
and 0 <= start_v < height
and 0 <= end_u < width
and 0 <= end_v < height
):
cv2.line(
constraints_vis,
(start_u, start_v),
(end_u, end_v),
(0, 255, 0),
2,
)
# Add legend
cv2.putText(
constraints_vis,
"Red: Before constraints",
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.7,
(0, 0, 255),
2,
)
cv2.putText(
constraints_vis,
"Green: After constraints",
(10, 60),
cv2.FONT_HERSHEY_SIMPLEX,
0.7,
(0, 255, 0),
2,
)
return constraints_vis
def visualize_robot_params(
frame: np.ndarray,
position: np.ndarray,
orientation_matrix: np.ndarray,
gripper_width: float,
camera_intrinsics: tuple,
) -> np.ndarray:
robot_vis = frame.copy()
height, width = frame.shape[:2]
focal_x, focal_y, center_x, center_y = camera_intrinsics
# Extract axes from orientation matrix
x_axis = orientation_matrix[:, 0] # First column (principal axis)
y_axis = orientation_matrix[:, 1] # Second column
z_axis = orientation_matrix[:, 2] # Third column (normal)
# Project position to image coordinates
x, y, z = position
if z > 0:
u = int(x * focal_x / z + center_x)
v = int(y * focal_y / z + center_y)
if 0 <= u < width and 0 <= v < height:
# Draw end effector position
cv2.circle(robot_vis, (u, v), 10, (255, 0, 0), -1) # Blue circle
# Draw X axis (principal axis)
dx, dy, dz = x_axis
scale = 50 # Scale for better visualization
end_u = int((x + dx * scale) * focal_x / (z + dz * scale) + center_x)
end_v = int((y + dy * scale) * focal_y / (z + dz * scale) + center_y)
if 0 <= end_u < width and 0 <= end_v < height:
cv2.line(
robot_vis, (u, v), (end_u, end_v), (0, 0, 255), 2
) # Red line (X axis)
cv2.putText(
robot_vis,
"X",
(end_u, end_v),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 255),
2,
)
# Draw Z axis (normal)
nx, ny, nz = z_axis
end_u = int((x + nx * scale) * focal_x / (z + nz * scale) + center_x)
end_v = int((y + ny * scale) * focal_y / (z + nz * scale) + center_y)
if 0 <= end_u < width and 0 <= end_v < height:
cv2.line(
robot_vis, (u, v), (end_u, end_v), (0, 255, 0), 2
) # Green line (Z axis)
cv2.putText(
robot_vis,
"Z",
(end_u, end_v),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 255, 0),
2,
)
# Draw Y axis
yx, yy, yz = y_axis
end_u = int((x + yx * scale) * focal_x / (z + yz * scale) + center_x)
end_v = int((y + yy * scale) * focal_y / (z + yz * scale) + center_y)
if 0 <= end_u < width and 0 <= end_v < height:
cv2.line(
robot_vis, (u, v), (end_u, end_v), (255, 0, 0), 2
) # Blue line (Y axis)
cv2.putText(
robot_vis,
"Y",
(end_u, end_v),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 0, 0),
2,
)
# Visualize gripper width
gripper_radius = int(gripper_width * 100) # Scale for better visualization
cv2.circle(
robot_vis, (u, v), gripper_radius, (0, 255, 255), 2
) # Yellow circle
# Add parameter values as text
y_offset = height - 160
cv2.putText(
robot_vis,
f"Position: ({x:.2f}, {y:.2f}, {z:.2f})",
(10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 255, 255),
1,
)
y_offset += 30
cv2.putText(
robot_vis,
f"X axis: ({x_axis[0]:.2f}, {x_axis[1]:.2f}, {x_axis[2]:.2f})",
(10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 255),
1,
)
y_offset += 30
cv2.putText(
robot_vis,
f"Z axis: ({z_axis[0]:.2f}, {z_axis[1]:.2f}, {z_axis[2]:.2f})",
(10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 255, 0),
1,
)
y_offset += 30
cv2.putText(
robot_vis,
f"Gripper Width: {gripper_width:.2f}",
(10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 255, 255),
1,
)
return robot_vis